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Dictionary ADT

• Data structure with just three basic operations:

o findItem (i): find item with key (identifier) i

o insert (i): insert i into the dictionary

o remove (i): delete i

o Just like words in a Dictionary

• Where do we use them:
o Symbol tables for compiler

o Customer records (access by name)

o Games (positions, configurations)

o Spell checkers, etc.
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How to Implement a Dictionary?

• Sequences

o ordered

o unordered

• Binary Search Trees

• Hashtables
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Hashing

• An important and widely useful technique for 
implementing data structures such as dictionaries

• Constant time per operation (on the average)

• Worst case time proportional to the size of the set 
for each operation (just like array and chain 
implementation)
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Basic Idea

• Use hash function to map keys into positions in a 

hash table Constant time per operation (on the 

average)

Ideally

• If element e has key k and h is hash function, then e 
is stored in position h(k) of table

• To search for e, compute h(k) to locate position. If no 
element, dictionary does not contain e.
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Example

Dictionary Student Records

• Keys are ID numbers (1000 - 2000), no more than 
1001 students

• Hash function: h(k) = k-1000 maps ID into distinct 
table positions 0-1000

• array table[1001] hash table
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Analysis (Ideal Case)

• O(b) time to initialize hash table (b number of 
positions or buckets in hash table)

• O(1) time to perform insert, remove, search
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Ideal Case is Unrealistic

• Works for implementing dictionaries, but many 
applications have key ranges that are too large to 
have 1-1 mapping between buckets and keys!

Example

• Suppose key can take on values from 0 .. 65,535 (2 
byte unsigned int)

• Expect ≈ 1,000 records at any given time

• Impractical to use hash table with 65,536 slots!
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Hash Functions

• If key range too large, use hash table with fewer buckets and a 
hash function which maps multiple keys to same bucket:

 h(k1) = 𝛽 = h(k2): k1 and k2 have collision at slot 𝛽

• Popular hash functions: hashing by division

 h(k) = k%D, where D is number of buckets in hash table

• Example: hash table with 11 buckets

h(k) = k%11

80 →

40 →

65 →

58 →
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Hash Functions

• If key range too large, use hash table with fewer buckets and a 
hash function which maps multiple keys to same bucket:

 h(k1) = 𝛽 = h(k2): k1 and k2 have collision at slot 𝛽

• Popular hash functions: hashing by division

 h(k) = k%D, where D is number of buckets in hash table

• Example: hash table with 11 buckets

h(k) = k%11

80 → 3 (80%11= 3), 

40 → 7, 

65 → 10

58 → 3 collision!
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Collision Resolution Policies

• Two classes:

o (1) Open hashing, a.k.a. separate chaining

o (2) Closed hashing, a.k.a. open addressing

• Difference has to do with whether collisions are 
stored outside the table (open hashing) or whether 
collisions result in storing one of the records at 
another slot in the table (closed hashing)



CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Closed Hashing

• Associated with closed hashing is a rehash strategy:

 “If we try to place x in bucket h(x) and find it 
occupied, find alternative location h1(x), h2(x), 
etc. Try each in order, if none empty table is full,”

• h(x) is called home bucket

• Simplest rehash strategy is called linear hashing

hi(x) = (h(x) + i) % D 

(usually, i starts from 1 and is increased by 1 every time)

• In general, our collision resolution strategy is to 
generate a sequence of hash table slots (probe sequence) 
that can hold the record; test each slot until find empty 
one (probing)
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Example Linear (Closed) Hashing

• D=8, keys a, b, c, d have hash values h(a)=3, h(b)=0, 
h(c)=4, h(d)=3
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Example Linear (Closed) Hashing

• D=8, keys a, b, c, d have hash values h(a)=3, h(b)=0, 
h(c)=4, h(d)=3
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Example Linear (Closed) Hashing

• D=8, keys a, b, c, d have hash values h(a)=3, h(b)=0, 
h(c)=4, h(d)=3

• Where do we insert d? 3 already filled
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Example Linear (Closed) Hashing

• D=8, keys a, b, c, d have hash values h(a)=3, h(b)=0, 
h(c)=4, h(d)=3

• Where do we insert d? 3 already filled

• Probe sequence using linear hashing:

h1(d) = (h(d)+1)%8 = 4%8 = 4

h2(d) = (h(d)+2)%8 = 5%8 = 5*

h3(d) = (h(d)+3)%8 = 6%8 = 6

etc.

7, 0, 1, 2 

• Wraps around the beginning 

of the table!
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Example Linear (Closed) Hashing

• D=8, keys a, b, c, d have hash values h(a)=3, h(b)=0, 
h(c)=4, h(d)=3

• Where do we insert d? 3 already filled

• Probe sequence using linear hashing:

h1(d) = (h(d)+1)%8 = 4%8 = 4

h2(d) = (h(d)+2)%8 = 5%8 = 5*

h3(d) = (h(d)+3)%8 = 6%8 = 6

etc.

7, 0, 1, 2 

• Wraps around the beginning 

of the table!
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Operations Using Linear Hashing

• findItem

o Examine h(k), h1(k), h2(k), …, until we find k or home 
bucket

• insert

o Examine h(k), h1(k), h2(k), …, until we find an empty 
bucket or home bucket

• remove

o Perform findIterm and then delete if it is in the hash 
table

o May need to reorganize table after many deletions
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Performance Analysis - Worst Case

• Initialization: O(b), b# of buckets

• Insert and search: O(n), n number of elements in 
table; all n key values have same home bucket

• Not better than linear list for maintaining dictionary!
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Improved Collision Resolution

• Linear probing: hi(x) = (h(x) + i) % D

o all buckets in table will be candidates for inserting a 
new record before the probe sequence returns to home 
position

o clustering of records, leads to long probing sequences
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Improved Collision Resolution

• Linear probing: hi(x) = (h(x) + i) % D

o all buckets in table will be candidates for inserting a 
new record before the probe sequence returns to home 
position

o clustering of records, leads to long probing sequences

• Linear probing with skipping: hi(x) = (h(x) + ic) % D
o c is a constant other than 1

o records with adjacent home buckets will not follow 
same probe sequence
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Improved Collision Resolution

• Linear probing: hi(x) = (h(x) + i) % D

o all buckets in table will be candidates for inserting a 
new record before the probe sequence returns to home 
position

o clustering of records, leads to long probing sequences

• Linear probing with skipping: hi(x) = (h(x) + ic) % D
o c is a constant other than 1

o records with adjacent home buckets will not follow 
same probe sequence

• (Pseudo) Random probing: hi(x) = (h(x) + ri) % D
o ri is the ith value in a random permutation of numbers 

from 1 to D-1

o insertions and searches use the same sequence of 
“random” numbers
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Example

• What if the next element has home bucket 0? 
→ go to bucket 3

    Same for elements with home bucket 1 or 2!

    Only a record with home position 3 will stay.

    ⟹ probability=4/11 that next record will  

         go to bucket 3

• Similarly, records hashing to 7, 8, 9 will end up in 
10

Only records hashing to 4 will end up in position 4 
(probability=? that next record will go to bucket 4); 
same for 5 and 6

Hash function: h(k) = k%11
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Example

• insert 1052 (home bucket: 7)
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Example

• insert 1052 (home bucket: 7)
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Example

• insert 1052 (home bucket: 7)

• next element in bucket 3 with 
probability = ?
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Open Hashing

• Each bucket in the hash table is the head of a linked 
list

• All elements that hash to a particular bucket are 
placed on that bucket’s linked list

• Records within a bucket can be ordered in several 
ways

o by order of insertion

o by key value order

o by frequency of access order
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Open Hashing Data Organization
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Analysis

• Open hashing is more appropriate when the hash table 
is kept in main memory, implemented with a standard 
in-memory linked list

• We hope that number of elements per bucket roughly 
equal in size, so that the lists will be short

• If there are n elements in set, then each bucket will 
have roughly n/D

• If we can estimate n and choose D to be roughly as 
large, then the average bucket will have only one or 
two members
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Analysis

Average time per dictionary operation:

• D buckets, n elements in dictionary ⟹ average n/D 
elements per bucket

• insert, search, remove operation take O(1+n/D) time 
each

• If we can choose D to be about n, constant time



CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Comparison with Closed Hashing

• Worst case performance is O(n) for both

• Number of operations for hashing (how many probes)

23  6  8   10   23   5  12   4   9  19

D=9

h(x) = x % D
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Practice

• Draw the 11 entry hashtable for hashing the keys 12, 
44, 13, 88, 23, 94, 11, 39, 20 using the function (2i+5) 
mod 11 with 

 (1) closed hashing, linear probing

 (2) open hashing, linked list
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