
CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

CSCE 2110
Foundations of Data Structures

Hashing

University of North Texas

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Dictionary ADT

• Data structure with just three basic operations:

o findItem (i): find item with key (identifier) i

o insert (i): insert i into the dictionary

o remove (i): delete i

o Just like words in a Dictionary

• Where do we use them:
o Symbol tables for compiler

o Customer records (access by name)

o Games (positions, configurations)

o Spell checkers, etc.

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

How to Implement a Dictionary?

• Sequences

o ordered

o unordered

• Binary Search Trees

• Hashtables

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Hashing

• An important and widely useful technique for
implementing data structures such as dictionaries

• Constant time per operation (on the average)

• Worst case time proportional to the size of the set
for each operation (just like array and chain
implementation)

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Basic Idea

• Use hash function to map keys into positions in a

hash table Constant time per operation (on the

average)

Ideally

• If element e has key k and h is hash function, then e
is stored in position h(k) of table

• To search for e, compute h(k) to locate position. If no
element, dictionary does not contain e.

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Example

Dictionary Student Records

• Keys are ID numbers (1000 - 2000), no more than
1001 students

• Hash function: h(k) = k-1000 maps ID into distinct
table positions 0-1000

• array table[1001] hash table

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Analysis (Ideal Case)

• O(b) time to initialize hash table (b number of
positions or buckets in hash table)

• O(1) time to perform insert, remove, search

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Ideal Case is Unrealistic

• Works for implementing dictionaries, but many
applications have key ranges that are too large to
have 1-1 mapping between buckets and keys!

Example

• Suppose key can take on values from 0 .. 65,535 (2
byte unsigned int)

• Expect ≈ 1,000 records at any given time

• Impractical to use hash table with 65,536 slots!

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Hash Functions

• If key range too large, use hash table with fewer buckets and a
hash function which maps multiple keys to same bucket:

 h(k1) = 𝛽 = h(k2): k1 and k2 have collision at slot 𝛽

• Popular hash functions: hashing by division

 h(k) = k%D, where D is number of buckets in hash table

• Example: hash table with 11 buckets

h(k) = k%11

80 →

40 →

65 →

58 →

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Hash Functions

• If key range too large, use hash table with fewer buckets and a
hash function which maps multiple keys to same bucket:

 h(k1) = 𝛽 = h(k2): k1 and k2 have collision at slot 𝛽

• Popular hash functions: hashing by division

 h(k) = k%D, where D is number of buckets in hash table

• Example: hash table with 11 buckets

h(k) = k%11

80 → 3 (80%11= 3),

40 → 7,

65 → 10

58 → 3 collision!

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Collision Resolution Policies

• Two classes:

o (1) Open hashing, a.k.a. separate chaining

o (2) Closed hashing, a.k.a. open addressing

• Difference has to do with whether collisions are
stored outside the table (open hashing) or whether
collisions result in storing one of the records at
another slot in the table (closed hashing)

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Closed Hashing

• Associated with closed hashing is a rehash strategy:

 “If we try to place x in bucket h(x) and find it
occupied, find alternative location h1(x), h2(x),
etc. Try each in order, if none empty table is full,”

• h(x) is called home bucket

• Simplest rehash strategy is called linear hashing

hi(x) = (h(x) + i) % D

(usually, i starts from 1 and is increased by 1 every time)

• In general, our collision resolution strategy is to
generate a sequence of hash table slots (probe sequence)
that can hold the record; test each slot until find empty
one (probing)

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Example Linear (Closed) Hashing

• D=8, keys a, b, c, d have hash values h(a)=3, h(b)=0,
h(c)=4, h(d)=3

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Example Linear (Closed) Hashing

• D=8, keys a, b, c, d have hash values h(a)=3, h(b)=0,
h(c)=4, h(d)=3

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Example Linear (Closed) Hashing

• D=8, keys a, b, c, d have hash values h(a)=3, h(b)=0,
h(c)=4, h(d)=3

• Where do we insert d? 3 already filled

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Example Linear (Closed) Hashing

• D=8, keys a, b, c, d have hash values h(a)=3, h(b)=0,
h(c)=4, h(d)=3

• Where do we insert d? 3 already filled

• Probe sequence using linear hashing:

h1(d) = (h(d)+1)%8 = 4%8 = 4

h2(d) = (h(d)+2)%8 = 5%8 = 5*

h3(d) = (h(d)+3)%8 = 6%8 = 6

etc.

7, 0, 1, 2

• Wraps around the beginning

of the table!

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Example Linear (Closed) Hashing

• D=8, keys a, b, c, d have hash values h(a)=3, h(b)=0,
h(c)=4, h(d)=3

• Where do we insert d? 3 already filled

• Probe sequence using linear hashing:

h1(d) = (h(d)+1)%8 = 4%8 = 4

h2(d) = (h(d)+2)%8 = 5%8 = 5*

h3(d) = (h(d)+3)%8 = 6%8 = 6

etc.

7, 0, 1, 2

• Wraps around the beginning

of the table!

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Operations Using Linear Hashing

• findItem

o Examine h(k), h1(k), h2(k), …, until we find k or home
bucket

• insert

o Examine h(k), h1(k), h2(k), …, until we find an empty
bucket or home bucket

• remove

o Perform findIterm and then delete if it is in the hash
table

o May need to reorganize table after many deletions

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Performance Analysis - Worst Case

• Initialization: O(b), b# of buckets

• Insert and search: O(n), n number of elements in
table; all n key values have same home bucket

• Not better than linear list for maintaining dictionary!

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Improved Collision Resolution

• Linear probing: hi(x) = (h(x) + i) % D

o all buckets in table will be candidates for inserting a
new record before the probe sequence returns to home
position

o clustering of records, leads to long probing sequences

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Improved Collision Resolution

• Linear probing: hi(x) = (h(x) + i) % D

o all buckets in table will be candidates for inserting a
new record before the probe sequence returns to home
position

o clustering of records, leads to long probing sequences

• Linear probing with skipping: hi(x) = (h(x) + ic) % D
o c is a constant other than 1

o records with adjacent home buckets will not follow
same probe sequence

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Improved Collision Resolution

• Linear probing: hi(x) = (h(x) + i) % D

o all buckets in table will be candidates for inserting a
new record before the probe sequence returns to home
position

o clustering of records, leads to long probing sequences

• Linear probing with skipping: hi(x) = (h(x) + ic) % D
o c is a constant other than 1

o records with adjacent home buckets will not follow
same probe sequence

• (Pseudo) Random probing: hi(x) = (h(x) + ri) % D
o ri is the ith value in a random permutation of numbers

from 1 to D-1

o insertions and searches use the same sequence of
“random” numbers

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Example

• What if the next element has home bucket 0?
→ go to bucket 3

 Same for elements with home bucket 1 or 2!

 Only a record with home position 3 will stay.

 ⟹ probability=4/11 that next record will

 go to bucket 3

• Similarly, records hashing to 7, 8, 9 will end up in
10

Only records hashing to 4 will end up in position 4
(probability=? that next record will go to bucket 4);
same for 5 and 6

Hash function: h(k) = k%11

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Example

• insert 1052 (home bucket: 7)

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Example

• insert 1052 (home bucket: 7)

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Example

• insert 1052 (home bucket: 7)

• next element in bucket 3 with
probability = ?

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Open Hashing

• Each bucket in the hash table is the head of a linked
list

• All elements that hash to a particular bucket are
placed on that bucket’s linked list

• Records within a bucket can be ordered in several
ways

o by order of insertion

o by key value order

o by frequency of access order

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Open Hashing Data Organization

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Analysis

• Open hashing is more appropriate when the hash table
is kept in main memory, implemented with a standard
in-memory linked list

• We hope that number of elements per bucket roughly
equal in size, so that the lists will be short

• If there are n elements in set, then each bucket will
have roughly n/D

• If we can estimate n and choose D to be roughly as
large, then the average bucket will have only one or
two members

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Analysis

Average time per dictionary operation:

• D buckets, n elements in dictionary ⟹ average n/D
elements per bucket

• insert, search, remove operation take O(1+n/D) time
each

• If we can choose D to be about n, constant time

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Comparison with Closed Hashing

• Worst case performance is O(n) for both

• Number of operations for hashing (how many probes)

23 6 8 10 23 5 12 4 9 19

D=9

h(x) = x % D

CSCE 2110 – Foundations of Data StructureCSCE 2110 – Foundations of Data Structure

Practice

• Draw the 11 entry hashtable for hashing the keys 12,
44, 13, 88, 23, 94, 11, 39, 20 using the function (2i+5)
mod 11 with

 (1) closed hashing, linear probing

 (2) open hashing, linked list

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

