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Dictionary ADT

Data structure with just three basic operations:
findItem (i): find item with key (identifier) i
insert (i): insert i intfo the dictionary
remove (i): delete i
Just like words in a Dictionary

Where do we use them:
Symbol tables for compiler
Customer records (access by name)
Games (positions, configurations)
Spell checkers, etc.
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How to Implement a Dictionary?

Sequences

o ordered

o unordered

Binary Search Trees

Hashtables
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Hashing

An important and widely useful technique for
implementing data structures such as dictionaries

Constant time per operation (on the average)

Worst case time proportional to the size of the set
for each operation (just like array and chain
implementation)
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Basic Idea

Use hash function to map keys into positions in a
hash table Constant time per operation (on the
average)

Ideally

+ If element e has key k and h is hash function, then e
is stored in position h(k) of table

* To search for e, compute h(k) to locate position. If no
element, dictionary does not contain e.

CSCE 2110 - Foundations of Data Structure



Example

Dictionary Student Records

+ Keys are ID numbers (1000 - 2000), no more than
1001 students

* Hash function: h(k) = k-1000 maps ID into distinct

table positions 0-1000
* array table[1001] / hash table

1000

buckets
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Analysis (Ideal Case)

- O(b) time to initialize hash table (b number of
positions or buckets in hash table)

- O(1) time to perform insert, remove, search
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Ideal Case is Unrealistic

* Works for implementing dictionaries, but many
applications have key ranges that are too large to
have 1-1 mapping between buckets and keys!

Example

+ Suppose key can take on values from O .. 65,535 (2
byte unsigned int)

+ Expect = 1,000 records at any given time
 Impractical to use hash table with 65,536 slots!
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Hash Functions

If key range too large, use hash table with fewer buckets and a
hash function which maps multiple keys to same bucket:

h(k,) = B = h(k,): k; and k, have collision at slot
Popular hash functions: hashing by division

h(k) = k%D, where D is number of buckets in hash table
Example: hash table with 11 buckets
h(k) = k%11
80 —
40 —
65 —
58 —>
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Hash Functions

If key range too large, use hash table with fewer buckets and a
hash function which maps multiple keys to same bucket:

h(k,) = B = h(k,): k; and k, have collision at slot
Popular hash functions: hashing by division

h(k) = k%D, where D is number of buckets in hash table
Example: hash table with 11 buckets

h(k) = k%11

80 — 3 (80%11= 3),
40 — 7,

65 — 10

58 — 3 collision!
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Collision Resolution Policies

+ Two classes:
o (1) Open hashing, a.k.a. separate chaining
o (2) Closed hashing, a.k.a. open addressing

Dif ference has to do with whether collisions are
stored outside the table (open hashing) or whether
collisions result in storing one of the records at
another slot in the table (closed hashing)
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Closed Hashing

+ Associated with closed hashing is a rehash strategy:

"If we try to place x in bucket h(x) and find it
occupied, find alternative location h;(x), h,(x),
etc. Try each in order, if none empty table is full

* h(x) is called home bucket
- Simplest rehash strategy is called linear hashing
hi(x) = (h(x) +i) % D
(usually, i starts from 1 and is increased by 1 every time)

» Ingeneral, our collision resolution strategy is to
generate a sequence of hash table slots (probe sequence)
that can hold the record; test each slot until find empty
one (probing)
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Example Linear (Closed) Hashing

- D=8, keys a, b, ¢, d have hash values h(a)=3, h(b)=0,
h(c)=4, h(d)=3
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Example Linear (Closed) Hashing

- D=8, keys a, b, ¢, d have hash values h(a)=3, h(b)=0,
h(c)=4, h(d)=3

0 b

1
2
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Example Linear (Closed) Hashing

- D=8, keys a, b, ¢, d have hash values h(a)=3, h(b)=0,
h(c)=4, h(d)=3

* Where do we insert d? 3 already fille

b
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Example Linear (Closed) Hashing

- D=8, keys a, b, ¢, d have hash values h(a)=3, h(b)=0,
h(c)=4, h(d)=3

* Where do we insert d? 3 already fille b
» Probe sequence using linear hashing: ;
h1(d) = (h(d)+1)%8 = 47%8 = 4
h2(d) = (h(d)+2)%8 = 5%8 = 5* ] a
h3(d) = (h(d)+3)%8 = 6%8 = 6 4
etc. 5
7,0,1,2 A
* Wraps around the beginning 7
of the tablel
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Example Linear (Closed) Hashing

- D=8, keys a, b, ¢, d have hash values h(a)=3, h(b)=0,
h(c)=4, h(d)=3

* Where do we insert d? 3 already fille b
» Probe sequence using linear hashing: ;
h1(d) = (h(d)+1)%8 = 47%8 = 4
h2(d) = (h(d)+2)%8 = 5%8 = 5* ] a
h3(d) = (h(d)+3)%8 = 6%8 = 6 4
etc. 5 d
7,0,1,2 A
* Wraps around the beginning 7
of the tablel
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Operations Using Linear Hashing

e findItem

o Examine h(k), hi(k), ho(k), ..., until we find k or home
bucket

e Insert

o Examine h(k), hy(k), ho(k), ..., until we find an empty
bucket or home bucket

¢ remove

o Perform findIterm and then delete if it is in the hash
table

o May need to reorganize table after many deletions
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Performance Analysis - Worst Case

- Initialization: O(b), b# of buckets

+ Insert and search: O(n), n number of elements in
table; all n key values have same home bucket

* Not better than linear list for maintaining dictionary!
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Improved Collision Resolution

* Linear probing: hi(x) = (h(x) + i) % D

o all buckets in table will be candidates for inserting a
new record before the probe sequence returns to home
position

o clustering of records, leads to long probing sequences
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Improved Collision Resolution

* Linear probing: hi(x) = (h(x) + i) % D

o all buckets in table will be candidates for inserting a
new record before the probe sequence returns to home
position

o clustering of records, leads to long probing sequences

» Linear probing with skipping: hi(x) = (h(x) + ic) % D

o cis a constant other than 1

o records with adjacent home buckets will not follow
same probe sequence
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Improved Collision Resolution

* Linear probing: hi(x) = (h(x) + i) % D

o all buckets in table will be candidates for inserting a
new record before the probe sequence returns to home
position

o clustering of records, leads to long probing sequences

» Linear probing with skipping: hi(x) = (h(x) + ic) % D

o cis a constant other than 1

o records with adjacent home buckets will not follow
same probe sequence

* (Pseudo) Random probing: hy(x) = (h(x) + r;) % D
o r;is the i™ value in a random permutation of numbers
from 1 to D-1

o insertions and searches use the same sequence of
“random"” numbers
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Example

Hash function: h(k) = k%11

What if the next element has home bucket 0?
— go to bucket 3

Same for elements with home bucket 1 or 2!
Only a record with home position 3 will stay.
= probability=4/11 that next record will

go to bucket 3

Similarly, records hashing to 7, 8, 9 will end up in

10

Only records hashing 1o 4 will end up in position 4
(probability=? that next record will go to bucket 4);

same for 5 and 6
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Example

- insert 1052 (home bucket: 7)
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Example

- insert 1052 (home bucket: 7)
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Example

insert 1052 (home bucket: 7)

next element in bucket 3 with
probability = ?
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Open Hashing

Each bucket in the hash table is the head of a linked
list

- All elements that hash to a particular bucket are
placed on that bucket’s linked list

» Records within a bucket can be ordered in several
ways
o by order of insertion
o by key value order
o by frequency of access order
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Open Hashing Data Organization

0 > > —
1 ~
\ X I
2
3
4
D-1 N > "
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Analysis

»  Open hashing is more appropriate when the hash table
is kept in main memory, implemented with a standard
in-memory linked list

We hope that number of elements per bucket roughly
equal in size, so that the lists will be short

- If there are n elements in set, then each bucket will

have roughly n/D

+ If we can estimate n and choose D to be roughly as
large, then the average bucket will have only one or
two members
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Analysis

Average time per dictionary operation:

D buckets, n elements in dictionary = average n/D
elements per bucket

insert, search, remove operation take O(1+n/D) time
each

- If we can choose D to be about n, constant time
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Comparison with Closed Hashing

+ Worst case performance is O(n) for both

* Number of operations for hashing (how many probes)
23 6 8 10 23 512 4 9 19
D=9
h(x)=x %D
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Practice

* Draw the 11 entry hashtable for hashing the keys 12,
44,13, 88, 23, 94, 11, 39, 20 using the function (2i+5)
mod 11 with

(1) closed hashing, linear probing
(2) open hashing, linked list
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